Teleport
Database Access with Self-Hosted PostgreSQL
Version preview- Older Versions
Teleport can provide secure access to PostgreSQL via the Teleport Database Service. This allows for fine-grained access control through the Teleport RBAC system.
The Teleport Database Service proxies traffic from database clients to self-hosted databases in your infrastructure. Teleport maintains a certificate authority for database clients. You configure your database to trust the Teleport database client CA, and the Teleport Database Service presents certificates signed by this CA when proxying user traffic. With this setup, there is no need to store long-lived credentials for self-hosted databases.
Meanwhile, the Teleport Database Service verifies self-hosted databases by checking their TLS certificates against either the Teleport database CA or a custom CA chosen by the user.
In this guide, you will:
- Configure your PostgreSQL database for Teleport access.
- Add the database to your Teleport cluster.
- Connect to the database via Teleport.
How it works
The Teleport Database Service authenticates to your self-hosted PostgreSQL database using mutual TLS. PostgreSQL trusts the Teleport certificate authority for database clients, and presents a certificate signed by either the Teleport database CA or a custom CA. When a user initiates a database session, the Teleport Database Service presents a certificate signed by Teleport. The authenticated connection then proxies client traffic from the user.
Prerequisites
-
A running Teleport cluster version 16.4.8 or above. If you want to get started with Teleport, sign up for a free trial or set up a demo environment.
-
The
tctl
admin tool andtsh
client tool.Visit Installation for instructions on downloading
tctl
andtsh
.
- A self-hosted PostgreSQL instance.
- Command-line client
psql
installed and added to your system'sPATH
environment variable. - A host, e.g., an Amazon EC2 instance, where you will run the Teleport Database Service.
- Optional: a certificate authority that issues certificates for your self-hosted database.
- To check that you can connect to your Teleport cluster, sign in with
tsh login
, then verify that you can runtctl
commands using your current credentials. For example:If you can connect to the cluster and run thetsh login --proxy=teleport.example.com --user=email@example.comtctl statusCluster teleport.example.com
Version 16.4.8
CA pin sha256:abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678
tctl status
command, you can use your current credentials to run subsequenttctl
commands from your workstation. If you host your own Teleport cluster, you can also runtctl
commands on the computer that hosts the Teleport Auth Service for full permissions.
Step 1/5. Create a Teleport token and user
The Database Service requires a valid join token to join your Teleport cluster.
Run the following tctl
command and save the token output in /tmp/token
on the server that will run the Database Service:
tctl tokens add --type=db --format=textabcd123-insecure-do-not-use-this
Create a Teleport user
To modify an existing user to provide access to the Database Service, see Database Access Controls
Create a local Teleport user with the built-in access
role:
tctl users add \ --roles=access \ --db-users="*" \ --db-names="*" \ alice
Create a local Teleport user with the built-in access
and requester
roles:
tctl users add \ --roles=access,requester \ --db-users="*" \ --db-names="*" \ alice
Flag | Description |
---|---|
--roles | List of roles to assign to the user. The builtin access role allows them to connect to any database server registered with Teleport. |
--db-users | List of database usernames the user will be allowed to use when connecting to the databases. A wildcard allows any user. |
--db-names | List of logical databases (aka schemas) the user will be allowed to connect to within a database server. A wildcard allows any database. |
Database names are only enforced for PostgreSQL, MongoDB, and Cloud Spanner databases.
For more detailed information about database access controls and how to restrict access see RBAC documentation.
Step 2/5. Create a certificate/key pair
Teleport uses mutual TLS authentication with self-hosted databases. These databases must be able to verify certificates presented by the Teleport Database Service. Self-hosted databases also need a certificate/key pair that Teleport can verify.
By default, the Teleport Database Service trusts certificates issued by a certificate authority managed by the Teleport Auth Service. You can either:
- Configure your self-hosted database to trust this CA, and instruct Teleport to issue a certificate for the database to present to the Teleport Database Service.
- Configure the Database Service to trust a custom CA.
To configure the database to trust the Teleport CA and issue a certificate for the database, follow these instructions on your workstation:
-
To use
tctl
from your workstation, your Teleport user must be allowed to impersonate the system roleDb
in order to be able to generate the database certificate. Include the followingallow
rule in in your Teleport user's role:allow: impersonate: users: ["Db"] roles: ["Db"]
-
Export Teleport's certificate authority and a generate certificate/key pair. This example generates a certificate with a 1-year validity period.
db.example.com
is the hostname where the Teleport Database Service can reach the PostgreSQL server.tctl auth sign --format=db --host=db.example.com --out=server --ttl=2190hTTLWe recommend using a shorter TTL, but keep mind that you'll need to update the database server certificate before it expires to not lose the ability to connect. Pick the TTL value that best fits your use-case.
The command creates 3 files:
server.cas
,server.crt
andserver.key
.
If the PostgreSQL database already has a CA that it uses to sign certificates
, you only need to export a Teleport CA certificate for the database to
authenticate traffic from the Teleport Database Service. You do not need to
enable Db
impersonation privileges.
-
Replace example.teleport.sh:443 with the host and web port of the Teleport Proxy Service in your cluster. Run the following command on your workstation:
tctl auth export --type=db-client --auth-server=example.teleport.sh:443 > db-client.casThe command creates 1 file,
db-client.cas
. -
Append the contents of
db-client.cas
to your database's existing CA cert file, which this guide expects to be calledserver.cas
. -
Generate
server.crt
andserver.key
by retrieving a TLS certificate and private key from your existing database CA, signed for your database server. You will use these files later in the guide.
Step 3/5. Configure your PostgreSQL server
To configure your PostgreSQL server to accept TLS connections, add the following
to the PostgreSQL configuration file, postgresql.conf
, using the paths where
you placed the server.crt
, server.key
, and server.cas
files you generated
earlier:
ssl = on
ssl_cert_file = '/path/to/server.crt'
ssl_key_file = '/path/to/server.key'
ssl_ca_file = '/path/to/server.cas'
Restart the PostgreSQL instance to enable this configuration.
See Secure TCP/IP Connections with SSL in the PostgreSQL documentation for more details.
Configure PostgreSQL to require client certificate authentication from clients
connecting over TLS. This can be done by adding the following entries to
PostgreSQL's host-based authentication file pg_hba.conf
:
hostssl all all ::/0 cert
hostssl all all 0.0.0.0/0 cert
You should also ensure that you have no higher-priority authentication rules that will match, otherwise PostgreSQL will offer them first, and the certificate-based Teleport login will fail.
See The pg_hba.conf File in the PostgreSQL documentation for more details.
Step 4/5. Configure and start the Database Service
Install and configure Teleport where you will run the Teleport Database Service:
Install Teleport on your Linux server:
-
Assign edition to one of the following, depending on your Teleport edition:
Edition Value Teleport Enterprise Cloud cloud
Teleport Enterprise (Self-Hosted) enterprise
Teleport Community Edition oss
-
Get the version of Teleport to install. If you have automatic agent updates enabled in your cluster, query the latest Teleport version that is compatible with the updater:
TELEPORT_DOMAIN=example.teleport.comTELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/automaticupgrades/channel/default/version | sed 's/v//')"Otherwise, get the version of your Teleport cluster:
TELEPORT_DOMAIN=example.teleport.comTELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/ping | jq -r '.server_version')" -
Install Teleport on your Linux server:
curl https://cdn.teleport.dev/install-v16.4.8.sh | bash -s ${TELEPORT_VERSION} editionThe installation script detects the package manager on your Linux server and uses it to install Teleport binaries. To customize your installation, learn about the Teleport package repositories in the installation guide.
On the host where you will run the Teleport Database Service, start Teleport with the appropriate configuration.
Note that a single Teleport process can run multiple different services, for
example multiple Database Service agents as well as the SSH Service or Application
Service. The step below will overwrite an existing configuration file, so if
you're running multiple services add --output=stdout
to print the config in
your terminal, and manually adjust /etc/teleport.yaml
.
Run the following command to generate a configuration file at
/etc/teleport.yaml
for the Database Service. Update
example.teleport.sh to use the host and port of the Teleport Proxy
Service:
sudo teleport db configure create \ -o file \ --token=/tmp/token \ --proxy=example.teleport.sh \ --name=example-postgres \ --protocol=postgres \ --uri=postgres.example.com:5432 \ --labels=env=dev
To configure the Teleport Database Service to trust a custom CA:
-
Export a CA certificate for the custom CA and make it available at
/var/lib/teleport/db.ca
on the Teleport Database Service host. -
Run a variation of the command above that uses the
--ca-cert-file
flag. This configures the Teleport Database Service to use the CA certificate atdb.ca
to verify traffic from the database:sudo teleport db configure create \ -o file \ --token=/tmp/token \ --proxy=example.teleport.sh:443 \ --name=example-postgres \ --protocol=postgres \ --uri=postgres.example.com:5432 \ --ca-cert-file="/var/lib/teleport/db.ca" \ --labels=env=dev
If your database servers use certificates that are signed by a public CA such
as ComodoCA or DigiCert, you can use the trust_system_cert_pool
option
without exporting the CA:
sudo teleport db configure create \ -o file \ --token=/tmp/token \ --proxy=example.teleport.sh:443 \ --name=example-postgres \ --protocol=postgres \ --uri=postgres.example.com:5432 \ --trust_system_cert_pool \ --labels=env=dev
Configure the Teleport Database Service to start automatically when the host boots up by creating a systemd service for it. The instructions depend on how you installed the Teleport Database Service.
On the host where you will run the Teleport Database Service, enable and start Teleport:
sudo systemctl enable teleportsudo systemctl start teleport
On the host where you will run the Teleport Database Service, create a systemd service configuration for Teleport, enable the Teleport service, and start Teleport:
sudo teleport install systemd -o /etc/systemd/system/teleport.servicesudo systemctl enable teleportsudo systemctl start teleport
You can check the status of the Teleport Database Service with systemctl status teleport
and view its logs with journalctl -fu teleport
.
Teleport provides Helm charts for installing the Teleport Database Service in Kubernetes Clusters.
Set up the Teleport Helm repository.
Allow Helm to install charts that are hosted in the Teleport Helm repository:
helm repo add teleport https://charts.releases.teleport.dev
Update the cache of charts from the remote repository so you can upgrade to all available releases:
helm repo update
Install a Teleport agent into your Kubernetes Cluster with the Teleport Database Service configuration.
Create a file called values.yaml
with the following content. Update example.teleport.sh to use the host and port of the Teleport Proxy
Service and JOIN_TOKEN to the join token you created earlier:
roles: db
proxyAddr: example.teleport.sh
# Set to false if using Teleport Community Edition
enterprise: true
authToken: "JOIN_TOKEN"
databases:
- name: example-postgres
uri: postgres.example.com:5432
protocol: postgres
static_labels:
env: dev
To configure the Teleport Database Service to trust a custom CA:
-
Export a CA certificate for the custom CA and make it available at
db.ca
on your workstation. -
Create a secret containing the database CA certificate in the same namespace as Teleport using the following command:
kubectl create secret generic db-ca --from-file=ca.pem=/path/to/db.ca -
Add the following to
values.yaml
:roles: db proxyAddr: example.teleport.sh # Set to false if using Teleport Community Edition enterprise: true authToken: JOIN_TOKEN databases: - name: example-postgres uri: postgres.example.com:5432 protocol: postgres + tls: + ca_cert_file: "/etc/teleport-tls-db/db-ca/ca.pem" static_labels: env: dev + extraVolumes: + - name: db-ca + secret: + secretName: db-ca + extraVolumeMounts: + - name: db-ca + mountPath: /etc/teleport-tls-db/db-ca + readOnly: true
-
Install the chart:
helm install teleport-kube-agent teleport/teleport-kube-agent \ --create-namespace \ --namespace teleport-agent \ --version 16.4.8 \ -f values.yaml -
Make sure that the Teleport agent pod is running. You should see one
teleport-kube-agent
pod with a single ready container:kubectl -n teleport-agent get podsNAME READY STATUS RESTARTS AGEteleport-kube-agent-0 1/1 Running 0 32s
A single Teleport process can run multiple services, for example multiple Database Service instances as well as other services such the SSH Service or Application Service.
Step 5/5. Connect
Once the Database Service has joined the cluster, log in to see the available databases:
tsh login --proxy=teleport.example.com --user=alicetsh db lsName Description Labels
---------------- ------------------ --------
example-postgres Example PostgreSQL env=dev
tsh login --proxy=mytenant.teleport.sh --user=alicetsh db lsName Description Labels
---------------- ------------------ --------
example-postgres Example PostgreSQL env=dev
Note that you will only be able to see databases your role has access to. See RBAC section for more details.
To retrieve credentials for a database and connect to it:
tsh db connect --db-user=postgres --db-name=postgres example-postgres
To log out of the database and remove credentials:
Remove credentials for a particular database instance.
tsh db logout example-postgresRemove credentials for all database instances.
tsh db logout
Troubleshooting
Unable to cancel a query
If you use a PostgreSQL cli client like psql
, and you try to cancel a query
with ctrl+c
, but it doesn't cancel the query, then you need to connect using a
tsh local proxy instead.
When psql
cancels a query, it establishes a new connection without TLS
certificates, however Teleport requires TLS certificates not only for
authentication, but also to route database connections.
If you
enable TLS Routing in Teleport
then tsh db connect
will automatically start a local proxy for every
connection.
Alternatively, you can connect via
Teleport Connect
which also uses a local proxy.
Otherwise, you need to start a tsh local proxy manually using tsh proxy db
and connect via the local proxy.
If you have already started a long-running query in a psql
session that you
cannot cancel with ctrl+c, you can start a new client session to cancel that
query manually:
First, find the query's process identifier (PID):
SELECT pid,usename,backend_start,query FROM pg_stat_activity WHERE state = 'active';
Next, gracefully cancel the query using its PID. This will send a SIGINT signal to the postgres backend process for that query:
SELECT pg_cancel_backend(<PID>);
You should always try to gracefully terminate a query first, but if graceful cancellation is taking too long, then you can forcefully terminate the query instead. This will send a SIGTERM signal to the postgres backend process for that query:
SELECT pg_terminate_backend(<PID>);
See the PostgreSQL documentation on
admin functions
for more information about the pg_cancel_backend
and pg_terminate_backend
functions.
SSL SYSCALL error
You may encounter the following error when your local psql
is not compatible
with newer versions of OpenSSL:
tsh db connect --db-user postgres --db-name postgres postgrespsql: error: connection to server at "localhost" (::1), port 12345 failed: Connection refused Is the server running on that host and accepting TCP/IP connections?connection to server at "localhost" (127.0.0.1), port 12345 failed: SSL SYSCALL error: Undefined error: 0
Please upgrade your local psql
to the latest version.
Next steps
- Learn how to restrict access to certain users and databases.
- View the High Availability (HA) guide.
- Take a look at the YAML configuration reference.
- See the full CLI reference.